ECE 592-091

Special Topics in Electrical Engineering: Resonant Power Converters

Instructor: Zeljko Pantic, zpantic@ncsu.edu

Course Description

ECE 592-091: Resonant Power Converters course covers the analysis, modeling, design, and control of high-frequency power resonant rectifiers, inverters, and DC-DC converters. More specific topics are:

- A general overview of the advantages, concepts, and challenges in designing and operating high-frequency resonant converters. Some of the topics include the converters' classification (half-wave, voltage or current driven, series- or parallel-loaded), zero-voltage and zero-current switching (ZVS and ZCS) notions, low dv/dt and di/dt switching concepts, loss mechanisms and loss calculation, synchronous rectification concept, modeling of nonideal and nonlinear reactive elements, selection and modeling of semiconductor switches for application in resonant converters, figures of merit for resonant converters comparison (switch stress, output-power capability), etc.
- *Modeling, analysis, and design of Class D and Class E voltage- and current-driven resonant rectifiers*. Three types of rectifiers will be studied, namely, the half-wave, bridge, and transformer center-tapped rectifiers. A detailed analysis will be provided of the voltage- and current-driven Class D rectifiers and a current-driven Class-E rectifier.
- *Modeling, analysis, and design of Class D and Class E series- and parallel-loaded resonant inverters*. Class-D series, parallel, and LLC resonant inverters and Class E ZVS resonant inverter will be studied in more detail. An overview of the advanced inverter topologies will be provided (Classes DE, EF_n and E/F_n, push-pull, etc.).
- *Resonant Power Converters* consisting of a cascaded connection of a resonant inverter and a rectifier will be studied. The operation principles will be discussed, and design procedures will be outlined for selected combinations of compatible inverters and rectifiers. The principle of operation of ZVS and ZCS quasi-resonant DC-DC converters will be illustrated with an example of a Buck ZVS quasi-resonant converter.
- *Resonant converter modeling and control*. Extended Describing Function (EDF) modeling approach of resonant converters will be outlined and illustrated. Frequency control will be explained and illustrated on the example of an LLC inverter. Phase-controlled resonant inverters and converters will be introduced and used to illustrate the phase-control concept.

Learning Outcomes

At the end of this course, students should be able to:

- Understand the operation of resonant power rectifiers, inverters, and resonant DC-DC converters. Classify different types of resonant converters and explain their applications
- Provide steady-state models of the most common resonant converters and derive analytical expressions that describe the relation between circuit components, the input power source, the output load, and the operating frequency
- Identify and calculate the resonant converter losses
- Design practical resonant rectifiers, inverters, and converters adhering to typical application requirements and practical constraints
- Derive a large- and small-signal model of a resonant converter
- Design a phase-shift controller for a resonant converter
- Design a frequency controller for a resonant converter
- Use MATLAB, Simulink, and LTSpice to analyze and simulate resonant power converters

Prerequisites: ECE 534 or equivalent

<u>Textbook</u>: Resonant Power Converters - Marian K. Kazimierczuk; Dariusz Czarkowski Edition: Second Edition ISBN: 1-118-58586-0 Web Link: TBD Cost: N/A

This textbook is required.

<u>Topics:</u>

	Resonant Power Conversion - Introduction	
Resonant Power C	Converters – classification and overview;	
Overview of concepts relevant for Resonant Power Converters		
	nductor switches for resonant converter – an overview	
Hard-sw	vitching vs. ZVS and ZCS switching	
Loss mo	odeling in resonant converters	
Underst	anding non-idealities and nonlinear phenomena in reactive elements and switches	
Synchro	onous rectification	
	Resonant Power Rectifiers	
Class D Current-I	Driven Rectifiers	
Class D Voltage-I		
Class E low dv/dt	Rectifiers	
	Resonant Power Inverters	
Resonant Inverters - introduction		
Class D Series Re	sonant Inverter	
Class D Parallel R	Lesonant Inverter	
Class D LLC Rese	onant Inverter	
Class E ZVS Reso		
Overview of advanced resonant inverters		
	Resonant Power Converters	
Resonant converters - topologies, principle of operation, efficiency, DC voltage transfer function		
Design of a select	ed resonant converter	
Quasiresonant converters; example of a Buck ZVS QRC		
	Resonant Power Converters Modeling and Control	
Large- and small-	signal modeling of resonant converters; Extended Describing Function	
Frequency control	l; Design of a frequency controller - example	
Phase-shift modul	ation; phase-controlled resonant converters	
Phase-shift contro	ller – design example	
Advance control t	opics and solutions	
Guest Lecture		

<u>Grading:</u>

Component	Weight
Homework (8 assignment, the best 7 will be graded)	40%
Project	25%
Exam	35%
Attendance	1%
Total	101%

Cross-listing in other departments: N/A